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A Conductive Wedge in Yee's Mesh

Piotr Przybyszewski and Michavirozowski, Member, IEEE

Abstract— This letter presents a correction of the finite- edge angle. Expansion coefficients are not knawgriori but
difference (FD) methods employing Yee's mesh, improving can be determined from known values of the fields at the grid
e e o e e o o o' POINS ocated in the icinty of the wedge. For concreeness et
arbitrarily located with respect to the grid points and yields YS ConS|der. the f|n|te-d|ﬁergnce time-domain (FDTD) analysis
significant error reduction. of the TM field near the knife edge cornar= 0,1}, = k/2.

(The derivation is analogous for the FDFD and edge angles

Index Terms—FDFD and FDTD methods, finite-difference " other than zero.) The arrangement of th.e.mesh is shown in
methods. ' Fig. 1(b). To calculate the expansion coefficients we use three

points with local coordinate$r;, ¢;), denoted in the figure
as E.;,i = 1,2,3. Equation (1) at pointgr;,¢;) may be

. INTRODUCTION represented in the matrix form as
INITE-DIFFERENCE (FD) schemes using Yee's mesh
are very attractive for modeling fields in frequency [1] E. :éege 2

and time [2] domain. One of the assumptions underlying these

schemes is that the field variation between cells is linear. TRifere B is a 3 x 3 matrix with the elements
assumption is not satisfied in the vicinity of the conductive =

wedges, where singularities occur [3]. These singularities K/
cause the local approximation error to be unbounded and bear, = 1;
may produce significant global inaccuracies. To avoid this

problem without increasing the mesh density, one may u$e account for an arbitrary position of the corner within a cell,
a technique known as a method of Motz and Woods [4)N€ next use the integral form of Maxwell's equations. In the
which locally modifies the scheme to incorporate the analyticéitegral approach average values of tHefield (for the TM
formulae expressing the field behavior in the neighborhood pelarization) along the cell edges are required in the FDTD
the wedge. Mur [5] and several authors [6], [7] adapted thig update theE field. These average values are calculated
technique for Yee’s mesh, but published solutions used orly integrating the expression for curl of the field along

the lowest order approximation and assumed that the edgdtigl edges. In the vicinity of the edge the curl bt field is
located centrally within Yee’s cell. In this letter we presergomputed using series (1). Accordingly, the average value of
the higher order approximation algorithm which enables otilee time derivative forH,; field is given by

to place the edge at any position within a cell. Our algorithm

% sin(kei/2). ?3)

is based on the integral form of Maxwell's equations and may & (t)k Ay k/21
be regarded as an extension of Mur's scheme. %Hyl = Z 2uly / sin[(k/2 — 1)¢]r dy
k=1 Y1
(4)
Il. LOCAL MODIFICATION wherey; denotes the; coordinate of the lower right corner

Let us consider a two-dimensional (2-D) conductive wedgd the shaded cell in Fig. 1(b) andy is the mesh size in
placed in Yee's mesh [Fig. 1(a)]. Thefield components in the y direction. A similar formula can be written for the
the vicinity of the wedge can be represented by the followind,; and H,, components. Since the coefficient§(t) are

series: calculated from fieldss.;(c® = ée—lﬂz), the formula for the
. o . . time derivative of theH field for the three points in the vicinity
E(r,¢,€) = ci(Or™ sin(v1¢) + ()™ sin(v2d) + -+ of the edge can be written in the form
H.(r,$,€) = c§(&) + cL(§)r™ cos(116)
+ B ()" cos(vag) + - @ SH,=ABE. (5)

where r and ¢ denote local polar coordinate§, represents

time or frequency, andy, = kw/(2r — «) where « is the with rowsée being the matrix representations of line integrals
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Fig. 1. Conductive wedge placed in Yee's mesh: (a) general case and arrangement of the mesh(fasy, = = for (b) TM and (c) TE polarization.
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Fig. 2. Test model of: (a) the fin line and FD grids, (b) TM and, (c) TE polarization. Grey area in (b) and (c) indicates possible location of metal
boundaries with respect to Yee's grid.

the elements of a 4« 4 matrix Q} given by TABLE |
- CUTOFF FREQUENCIES IN GIGAHERTZ AND RELATIVE
ERRORS FOR THESTANDARD AND NEw FDTD ALGORITHM

_ (k=1)/2

bhik =7 COS[(k - 1)¢1/2] (6) Standard New
10x12 | 40x48 | 160x192 | Ext. 10x12
Average values oft,1, F,», E,1,and E,, are calculated by TMee) 2525; 05(;53(2 d)i;)‘; 55.88 g%g;
taking the curl of H. computed using series expansion and S T AL AT T —
integration along relevant cell edges. The local formula is then TEoer | 1445 1 15.57 1584 11593} 15.93
Integ g ges. 9.28% | -2.23% | -0.55% 0.04%
TEee; | 30.24 | 30.63 | 30.73 | 30.76 || 30.73
d -1 -1.68% | -0.43% | -0.11% -0.11%

%Et - éhéh ﬂz (7)

with rows of matrix4, representing line integrals of the seriedrequencies obtained from the Richardson extrapolation of the
expansion of curlE. along four cell edges. results obtained by a standard FDTD for a sequence of grids

with increasing density were used as a reference.
In a standard FDTD algorithm the error for the coarsest grid
I1l. NUMERICAL RESULTS 10 x 12 reaches 9.28% for tHEE,.; mode and drops below

We implemented the new algorithm in the FDTD code ani only when the grid resolution is increased by the factor of
computed the cutoff frequencies of a fin line shown in Fig. 8 in each direction. When the new algorithm is applied, even
The eigenvalue analysis shows that the scheme is stable. TAbgcoarsest grid is sufficient to obtain accuracy below 0.1%.
| compares the results for tHEM..; and TE,.; modes for  To illustrate the ability of the new algorithm to deal with an
the standard and modified FDTD algorithm when the kniferbitrary location of the corner within Yee's cell we carried out
edge corner is located in the center of Yee's cell. Cuto#f series of simulations for the same structure but the 12-
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Fig. 3. Relative error [%)] of the cutoff frequencies versus the normalized wedge location within Yee's cell for the algorithm (a) without and ¢jestibrt.

grid translated in ther,y space by the normalized distance[2] K. S. Yee, “Numerical solution of initial boundary value problems in-

—045 < z;/Az < 0.45,-0.45 < y/Ay < 0.45. The

contour plots showing the relative error for the algorithm With[3

and without correction are given in Fig. 3. For the standard
[4] V. Vemuri and W. J. KarplusPigital Computer Treatment of Partial

method the largest error is at the level of %WE,.; mode)

or 2.5% (TM,.1) for all locations of edge within Yee’s cell 5

while the modified algorithm reduces this error to 0.4% and

0.8% in the worst case.
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