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A Conductive Wedge in Yee’s Mesh
Piotr Przybyszewski and Michal Mrozowski, Member, IEEE

Abstract— This letter presents a correction of the finite-
difference (FD) methods employing Yee’s mesh, improving
the accuracy when conductive edge corners are present in
the analyzed structure. The algorithm allows the wedge to be
arbitrarily located with respect to the grid points and yields
significant error reduction.

Index Terms—FDFD and FDTD methods, finite-difference
methods.

I. INTRODUCTION

FINITE-DIFFERENCE (FD) schemes using Yee’s mesh
are very attractive for modeling fields in frequency [1]

and time [2] domain. One of the assumptions underlying these
schemes is that the field variation between cells is linear. This
assumption is not satisfied in the vicinity of the conductive
wedges, where singularities occur [3]. These singularities
cause the local approximation error to be unbounded and
may produce significant global inaccuracies. To avoid this
problem without increasing the mesh density, one may use
a technique known as a method of Motz and Woods [4],
which locally modifies the scheme to incorporate the analytical
formulae expressing the field behavior in the neighborhood of
the wedge. Mur [5] and several authors [6], [7] adapted this
technique for Yee’s mesh, but published solutions used only
the lowest order approximation and assumed that the edge is
located centrally within Yee’s cell. In this letter we present
the higher order approximation algorithm which enables one
to place the edge at any position within a cell. Our algorithm
is based on the integral form of Maxwell’s equations and may
be regarded as an extension of Mur’s scheme.

II. L OCAL MODIFICATION

Let us consider a two-dimensional (2-D) conductive wedge
placed in Yee’s mesh [Fig. 1(a)]. Thefield components in
the vicinity of the wedge can be represented by the following
series:

(1)

where and denote local polar coordinates, represents
time or frequency, and where is the
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edge angle. Expansion coefficients are not knowna priori but
can be determined from known values of the fields at the grid
points located in the vicinity of the wedge. For concreteness let
us consider the finite-difference time-domain (FDTD) analysis
of the TM field near the knife edge corner
(The derivation is analogous for the FDFD and edge angles

other than zero.) The arrangement of the mesh is shown in
Fig. 1(b). To calculate the expansion coefficients we use three
points with local coordinates denoted in the figure
as Equation (1) at points may be
represented in the matrix form as

(2)

where is a 3 3 matrix with the elements

(3)

To account for an arbitrary position of the corner within a cell,
we next use the integral form of Maxwell’s equations. In the
integral approach average values of thefield (for the TM
polarization) along the cell edges are required in the FDTD
to update the field. These average values are calculated
by integrating the expression for curl of the field along
grid edges. In the vicinity of the edge the curl of field is
computed using series (1). Accordingly, the average value of
the time derivative for field is given by

(4)
where denotes the coordinate of the lower right corner
of the shaded cell in Fig. 1(b) and is the mesh size in
the direction. A similar formula can be written for the

and components. Since the coefficients are
calculated from fields , the formula for the
time derivative of the field for the three points in the vicinity
of the edge can be written in the form

(5)

with rows being the matrix representations of line integrals
along cell edges [cf. (4)] and vectors and consisting
of and respectively. Likewise,
for the TE polarization [Fig. 1(c)] series (1) is used and
coefficients are computed based on the relation

with vector consisting of fields and
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(a) (b) (c)

Fig. 1. Conductive wedge placed in Yee’s mesh: (a) general case and arrangement of the mesh for� = 0; �0 = � for (b) TM and (c) TE polarization.

(a) (b) (c)

Fig. 2. Test model of: (a) the fin line and FD grids, (b) TM and, (c) TE polarization. Grey area in (b) and (c) indicates possible location of metal
boundaries with respect to Yee’s grid.

the elements of a 4 4 matrix given by

(6)

Average values of and are calculated by
taking the curl of computed using series expansion and
integration along relevant cell edges. The local formula is then

(7)

with rows of matrix representing line integrals of the series
expansion of curl along four cell edges.

III. N UMERICAL RESULTS

We implemented the new algorithm in the FDTD code and
computed the cutoff frequencies of a fin line shown in Fig. 2.
The eigenvalue analysis shows that the scheme is stable. Table
I compares the results for the and modes for
the standard and modified FDTD algorithm when the knife
edge corner is located in the center of Yee’s cell. Cutoff

TABLE I
CUTOFF FREQUENCIES IN GIGAHERTZ AND RELATIVE

ERRORS FOR THESTANDARD AND NEW FDTD ALGORITHM

frequencies obtained from the Richardson extrapolation of the
results obtained by a standard FDTD for a sequence of grids
with increasing density were used as a reference.

In a standard FDTD algorithm the error for the coarsest grid
10 12 reaches 9.28% for the mode and drops below
1% only when the grid resolution is increased by the factor of
8 in each direction. When the new algorithm is applied, even
the coarsest grid is sufficient to obtain accuracy below 0.1%.

To illustrate the ability of the new algorithm to deal with an
arbitrary location of the corner within Yee’s cell we carried out
a series of simulations for the same structure but the 1012-
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(a) (b)

Fig. 3. Relative error [%] of the cutoff frequencies versus the normalized wedge location within Yee’s cell for the algorithm (a) without and (b) with correction.

grid translated in the space by the normalized distance
The

contour plots showing the relative error for the algorithm with
and without correction are given in Fig. 3. For the standard
method the largest error is at the level of 9% mode)
or 2.5% for all locations of edge within Yee’s cell
while the modified algorithm reduces this error to 0.4% and
0.8% in the worst case.
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